Central Simulation Committee Mission Statement

The CSC will strive to be a leader, both nationally and internationally, in the area of simulation training and will apply all of its efforts to ensure that our providers are “Trained, Competent, Safe, and Ready” to complete the critical mission of caring for our Soldiers and their Families.

Sim Lab Contacts

Central Simulation Committee (CSC) members

CRDAMC Sim Lab Administrator
Charles A. Steiner 1SG (Ret)
254-553-2070

CSC Sim Lab Specialist
Tahir M. Ruffin
254-618-8368

Director of Medical Education
Dr. Wayne A. Schirner DO, MPH
254-288-8304

Simulation Medical Director
Maj. Aaron D. Williams DO, RMSK
254-286-7115

Located in BLDG 36000 on 3 East

We support the following services with patient care sustainment/proficiency training initiatives: Physicians, Nurses, Physician Assistants, Health Technicians and Residency Programs.

With advanced notice of 48-72 hours we can facilitate training events ranging from Obstetric Emergencies, Code Blue to Trauma Training.

CRDAMC MD 870 (rev.)
1 October 2013
The CRDAMC Simulation Lab is a branch of the office of Graduate Medical Education and is committed to promoting medical simulation as a way to:

- Ensure provider competency
- Reduce medical errors
- Improve patient safety
- Reduce health care costs

The Central Simulation Committee (CSC) was formed in April 2007. CRDAMC is one of 10 Military Treatment Facilities (MTFs) selected to meet this need. Funding is provided by the Advances in Medical Practice (AMP) and the Army Medical Command (MEDCOM). The CSC members are Directors of Medical Education, Specialty Advisors (appointed), Simulation Medical Director (appointed), Simulation Administrator, and Program Directors from each of the 10 MTFs (TAMC, Madigan AMC, Womack AMC, Win Beaumont MC, Darnall AMC, DeWitt ACH, Eisenhower AMC, SAUSHEC/Brooke AMC, Martin ACH, NCC/WRAMC/USUHS).

What is Medical Simulation?

Simulation is a training and feedback method in which learners practice tasks and processes in lifelike circumstances using models or virtual reality, with feedback from observers, peers, actor-patients, and video cameras to assist improvement in skills. Computer-based medical simulation provides a realistic and economical set of tools to improve and maintain the skills of health care providers adding a valuable dimension to medical training similar to professional training in aviation, defense, maritime, and nuclear energy. Medical simulators allow individuals to review and practice procedures as often as required to reach proficiency without harming the patient.

In medicine, sophisticated mannequins, known as patient simulators provide health care professionals with a computer-based patient that breathes, responds to drugs, talks, and drives all clinical monitors in the operating room, e.g., blood pressure and pulse rate.

Task trainers provide a simulated subset of functionality, such as how to give a Smallpox inoculation or how to insert a chest tube.

Computer-based training provides software programs that train and assess clinical knowledge and decision-making skills. Simulated/standardized patients allow students to interact with actors trained to act as patients providing students with valuable feedback on, among other things, bedside manner.

Medical simulation is a cross-disciplinary effort that brings together physicians, nurses, and allied health professionals across a variety of disciplines with computer scientists, researchers, educators, and human factors engineers.

Why use Medical Simulation?

Currently, there are hundreds of schools in the United States providing “hands on” health care education to medical, nursing, and allied health students. These schools predominately use the apprenticeship model as a main teaching style, often referred to in medicine as “do one, see one, teach one.”

A health care provider’s ability to react prudently in an unexpected situation is one of the most critical factors in creating a positive outcome in a medical emergency, regardless of whether it occurs on the battlefield, freeway, or hospital emergency room.

This ability, however, is not a skill that one is born with, but rather it is learned and developed with time, training, practice, and repetition.

Today, advances in technology have created new and better methods for teaching the practice of medicine and reinforcing best practices. One of the most exciting innovations in health care is in the field of medical simulation.

As reported in the “Advanced Initiatives in Medical Simulation”:

“As what is medical simulation?”

“Why use medical simulation?” [Online]

http://www.medsim.org/whatisimulation.php